
Pergamon 

/. AppL Maths Mechs, Vol. 60, No. 4, pp. 693-697, 1996 
Copyright O 1996 Elsevier Science l,td 

Printed in Great Britain. All rights r~sctve.d 
pII: S0021--8928(96)00087-1 0021--897.8/96 $24.00+0.00 

A RIGID-PLASTIC ANALYSIS OF THE LIMITING 
EQUILIBRIUM OF AN EDGE CLEAVAGE CRACK 

IN A RECTANGULAR PLATE'  

S.  Y e .  A L E K S A N D R O V  a n d  R .  V. G O L ' D S H T E I N  

Moscow 

(Received 28 February 1995) 

The analytic solution of the plane rigid-plastic problem of an edge cleavage crack parallel to the base of a rectangular plate is 
constructed. The geome'try of the domain and the loading conditions (concentrated loads acting along a normal to the crack 
line) simulate a widely used scheme of experiments for determining the crack resistance of materials. The solution of the problem 
leads to a scheme for the flow of the material ahead of the crack which is aecompealied by the formulation of a transverse 
microcrack. A vadation~d principle for problems of rigid-plastic analysis, taking into account formation of cracks, formulated 
and proved in [1], is used to solve the problem. Copyright © 1996 Elsevier Science Ltd. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the limiting state of a sample with a crack which has been subjected to a symmetric load (Fig. 1). We 
assume that the length of the sample L is long compared with its half-width H so that the plastic zones should 
reach the surface y = _+ H. 

Let a plastic zone be formed ahead of the crack tip and let zones 2 and 3 be rigid. We shall obtain the boundary 
conditions on the boundary of the rigid and plastic zones. In the general case, a discontinuity in the tangential 
component of the velocity may occur at the boundary of the plastic and rigid zones and the jump in velocity is a 
constant quantity along the discontinuity line. 

The boundary of zones 1 and 2 must intersect the axis of symmetry (y = 0) at an angle ct = rd4. Consequently, 
the velocity component which is normal to the boundary of zones 1 and 2 is not parallel to the y axis and the 
discontinuity in this component is equal to zero from the condition of the incompressibility of the material. In 
addition, the velocity component vy at the intersection of the boundary of zones 1 and 2 with the axis of symmetry 
is equal to zero on both sides of the line of the assumed velocity discontinuity. As a consequence of this, it can be 
concluded that the jump in the velocity is equal to zero at the point of intersection of the boundary of zones 1 and 
2 and the axis of sym:aletry y = 0. Consequently, there is no jump in the velocity at the boundary of zones 1 and 
2 since, as was noted above, it preserves its magnitude along the whole of the discontinuity line. 

We now construct ~. solution for the rigid-plastic boundary (line 1 in Fig. 2) and pick out a characteristic domain 
which is adjacent to the rigid-plastic boundary (the domain bounded by the lines 1, 2 and 3 in Fig. 2), In this domain, 
we have a mixed problem with the boundary conditions vx = 0, vy = 0 on line 1 which is a characteristic and v~ = 
0 on line 2 which is not a characteristic. The boundary-value problem has the obvious solution v x = O, vy = ([ in 
the whole of the domain under consideration and, by virtue of the uniqueness of the solution, the domain bounded 
by lines 1, 2 and 3 is rigid. Analogous reasoning can be continued until the point O 1 coincides with the crack tip, 
that is, with the point O. In addition, since the surfacey = H is plane and stress-free, the field of the characteristics 
which reaches this su:rface must be formed by families of straight lines which are inclined at angles of __.n/4 to the 
axis (Fig. 2, the field of the characteristics close to the point O). If such a field of characteristics is obtained, fracture 
of the sample occurs by a rotation of the part of the sample 3 with respect to part 1 (Fig. 1) without the crack 
growing. 

However, as the exq~erimental data show, transverse cracks or crack-like defects frequently arise in the plastic zone 
in front of the crack tip. It is precisely this fact which is the basis of Cottrelrs model [1], within the framework of 
which the fiacture of an elastoplastic material and the occurrence of discontinuities in front of the main crack are 
atm'outed to kinematic causes. In the case of the rigid-plastic model being considered, the impossibility of plastic zones 
developing in front of the crack, as was shown above, is also associated with a kinematic process. It is therefore natural 
to assume in this case that transverse cracks develop, as in Cottrell's model, in front of the tip of the main crack. 

There are therefore two possible cases. 
1. Flow without a transverse crack and without a plastic zone. 
2. Flow with the development of a transverse crack. 
The choice of one or other velocity field can be made using a variational principle [2]. 
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2. F L O W  W I T H O U T  T H E  D E V E L O P M E N T  O F  T R A N S V E R S E  C R A C K S  

In this ease, the domain under consideration is localized close to the crack tip (Fig. 2). We introduce a new 
Cartesian system of coordinates xl ,yl  which coincides with the characteristics bounding the plastic zone (Fig. 2). 
In the case of a rectilinear field of characteristics, the projections of the velocity v~l and Vyl retain constant values 
along the corresponding characteristic lines [3]. Whenyl  = 0, the projection v,a = 0, since the material in zone 2 
is stationary and the velocity component normal to the lmey~ = 0 must be continuous. Hence, vyl = 0 on the whole 
of the plastic zone. Zone 3 rotates relative to the point O as an absolutely rigid body and the velocity vxl on the 
line x I will therefore be 

u xl =toYl (2.1) 

(to is the angular velocity of zone 2). Since, in the case of a rectilinear field of characteristics, Vxl preserves its value 
along each of the characteristic lines parallel tOXl, expression (2.1) holds in the whole of the plastic zone. 

Note that v~l = 0 whenyl = 0 and the velocities of the points of the rigid zone 2 which are adjacent to the plastic 
zone are perpendicular to the line xl = 0. There are therefore no discontinuities in the velocities along the lines 
xl = 0 andyl  = 0. The deformation rates from (2.1) and the conditions vy 1 = 0 are determined as 

exl = 0, e~ = 0, ext), l = to / 2 (2.2) 

The power of the plastic work, when the Mises yield condition is used, is determined by the expression 

q = K(2e#~#  )½ (2.3) 

Here K is the yield point in the case of pure shear. For the case under consideration, from (2.2) and (2.3) we find 

ql = Kto (2.4) 

whence the classicalmethod of an upper estimate gives 

Plltto = J ql d ~  (2.5) 

Here Pl is an estimate of P for the velocity field under consideration and to is the area of the plastic zone. 
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From (2.4) and (2..<), we find 

Pl = KH2/I (2.6) 

3. F L O W  W I T H  T H E  D E V E L O P M E N T  O F  A T R A N S V E R S E  C R A C K  

We now consider flow assuming that a transverse crack develops in front of the main crack. In accordance with 
the definition given in [1], the kinematically possible velocity field can be taken in the form shown in Fig. 3, where 
2 is a rigid zone whidi is analogous to zone 2 in Fig. 1, 1 and 3 are plastic zones formed by rectilinear families of 
characteristics, and 4 is a transverse crack. 

In this case the rigid zone 2 rotates about the point 02. Expression (2.4) for the power of the plastic work holds 
good in the plastic domain 1. In the plastic domain 3, we introduce the Cartesian system of coordinates x2y2 as 
shown in Fig. 3. Whe:a Y2 = 0, we obtain 

v.~ = - cox 2 (3.1) 

from the condition of continuity of the normal component of the velocity. 
In the system of coordinates xTy2, the axis of symmetry is defined by the equation 

x2 + Y2 --- ~ (3.2) 

The condition 

must be satisfied on this axis. 
From this, on the line (3.2), we have 

Uy =Ux2 cos(li/4)+v), 2 cos(n l4)=O 

Substituting (3.1) ~tnd (3.2) into (3.3), we obtain 

v ~2 = - v.~ (3.3) 

v x2 = - ¢°(Y2 - ~/2h) (3.4) 

and, since vx2 = ~/(2)olh when Y2 = 0, the discontinuity in the tangential component of the velocity along the x2 
axis will be 

Iv ~2 i= ~ h  (3.5) 

From (3.1) and (3.4), we find 

I~x2 = 0 ,  I~v 2 = 0 ,  I~x2), 2 = - t O  

Then, from (2.3) 

q3 = 2K{O 

The power of the plastic work in the whole of the domain will be 

(3.6) 
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Q2 = ~ ql d f l +  ~ q.~dfl+ l¢[u ~ 2 ]x/-~h (3.7) 
ta~ ta 3 

Here, t21 is the area of zone 1 and 123 is the area of zone 3. 
Substituting (2.4), (3.5) and (3.6) into (3.7), we obtain 

Q2 = Ka)[(H - h) 2 + 3h 2] (3.8) 

The discontinuity in the normal component of the velocity on line 4 is determined by the equality Iv,] = t~.  
Then, the power which is required to form a finite crack will be 

Q~ = OoO~ (3.9) 

(o0 is a constant of the material). From (3.8) and (3.9), we obtain the balance of the powers of the external and 
internal forces 

P(!  + h) to = Ko)[(H - h) 2 + 3h 2] + o0(~ 2 (3.10) 

It follows from the variational principle that an estimate of the load P2 for the given velocity field can be obtained 
from the condition for a minimum of P as a function of h. 

We now introduce the dimensionless quantifies l" = l/H, h" = h/H,  ~, = o0/K and from here on we shall omit the 
primes. Then, by (3.10), from the equation dP/dh = 0, subject to the condition that h ~> 0, we find 

h = - l + ~ . ,  ~.=[12 +(1+21)/ (4+, / ) ]~  (3.11) 

An estimate of the loading is obtained from (3.10) and (3.11). In dimensionless form, we have 

-fi2 = P2 I(KH) = 2{[l + 21+12(4+ y)]l),.-[l +l(4+ y)]} (3.12) 

4. A N A L Y S I S  OF  T H E  S O L U T I O N S  A N D  C O N C L U S I O N S  

We determine the ratio of the limiting loads from (2.6) and (3.12). 
The dependence of the ratio of the limiting loads ~ (the solid curves) and the dimensionless length of the crack 

h (the dashed curves) on I for different values of T is shown in Fig. 4. It is clear that the velocity field with the 
transverse crack gives a smaller value of the limiting load for all positions of the point of application of the load 
for which calculations have been carried out. Consequently, a solution with a crack more correctly reflects the actual 
pattern of the flow of a material during the fracture of a sample. 

It is likely that a better estimate of the limiting load could be found if another velocity field with a crack were 
to be chosen. However, it appears to be impossible to find a kinematically admissible velocity field without a crack 
which would improve the estimate (2.6). It follows that, in experiments of the type being considered, transverse 
cracks will develop in front of the main crack if the deformation of the material can be described using a rigid- 
plastic model. 
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It should be noted that such behaviour of a material is typical for the type of experiments being considered. If, 
for example, one cor~siders the bending or stretching of a sample with cracks, then the previous conclusions 
concerning the impo~dbility of plastic zones in front of a crack will be untrue since, in such cases, contact between 
the rigid and deform~Lble zones on the axis of symmetry is only poss$1e at a single point. The condition that the 
velocity normal to the axis of symmetry of the rigid zone should be equal to zero, which holds, for example, in the 
case of Prandtl's problem on the compression of a layer between rough sheets [3], therefore cannot be satisfied. 
A similar conclusion tan be drawn concerning the sample under consideration if the magnitude of L is sufficiently 
small. 

It is obvious that the previous conclusions hold if one is not considering a crack but a symmetric notch of any 
shape. Furthermore, it is possible to seek a solution with several transverse cracks which develop along the axis 
of synunetry. 
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